Category Archives: Habitat-Composants


Print pagePDF pageEmail page

Building the walls: The REMOTE System
The wall construction follows the principles of the ‘REMOTE’ wall – Residential Exterior Membrane Outside-insulation Technique – a high-performance building envelope developed by the Cold Climate Housing Research Centre in Alaska. Walls are framed conventionally with 2×6s and sheathing; stud cavities are still insulated with batts, but most of the insulation is on the outside of the sheathing.

This type of design allows vapour and air barriers to be sandwiched in between layers of insulation to protect their continuity. And in the case of polyethylene vapour barriers in such a variable climate as we have in Canada, they perform better on an annual basis when they are about 1/3 into the wall assembly instead of right behind drywall. With the Edelweiss House we have opted to omit the 6 mil poly entirely, its role being filled instead by an exterior moisture-permeable airtight weather barrier (Delta Vent SA) and an interior vapour retarder primer from Benjamin Moore. Vapour retarder primers stop twice the moisture required by building code, but allow walls to dry a bit to the interior during summer months, which is a growing concern among building scientists in terms of summer condensation damage as most homes now are air conditioned.

Siding installation
Whatever your wall assembly is, in order for it to last it has to be able to dry. The Edelweiss House exterior is finished with FSC-certified pre-stained wood siding from Riopel. Siding should protect your interior layers from wind, precipitation and humidity, and it must be able to dry. In order to do so, air and water must be able to move freely behind it so any water that penetrates can drain out, and humidity can escape.

Our weather barrier is covered by 3/4” vertical furring strips, giving ample room for drying. From the bottom, air flows up behind siding and into the soffit, joining air venting through the roof.

Building the roof
We opted for a green roof on this house, for a couple of reasons. Curb appeal would be one, we liked the idea of walking up to an open area of flowers and clover more so than a large sheet of metal, which was the other option. Green roofs can be quite a bit more work but have enormous benefits, mostly in urban areas.

Here in the woods there is no great need for it, but in dense urban centers a green roof offers habitat for birds and insects, and in commercial applications on office buildings they can give people access to green space that isn’t always easy to find in a downtown core.  They can be beneficial for heating and cooling, and though the cost is higher than other roofing systems, the life span is much longer.  The most destructive force on roofing materials is actually not precipitation, but UV rays. Once you cover membranes and they are no longer exposed, it is hard to really put a life span on it, because as evidenced by landfills, plastic underground just does not breakdown at a pace that we need worry about.

Mike Reynolds is a former home builder, a LEED for Homes Green Rater, and the editor

Best vapor barrier is called MembRain from

Earthen floors

Print pagePDF pageEmail page

By Sukita Reay Crimmel, James Thomson, and Frank Meyer on The Art of Natural Building

Most traditional earthen floors are just the raw earth, tamped down with human feet and moistened frequently with water to keep the dust down. Sometimes sealers are used to stabilize the earth more permanently.
Earthen floors are remarkably versatile, but may not be suitable for every application. It’s useful to understand a few of their key characteristics to determine where they should and should not be installed.

Weight:  Earthen floors are heavy; they require a stable and strong subfloor. Most typically they are built “on grade” (i.e., directly on the ground), over a strong base pad made of concrete or compacted gravel (road base). They can also be built on raised wooden subfloors, even on second or third levels if the structure is strong enough to support the additional weight; consult with an engineer if in doubt. An advantage of heavy floors is that they are a good source of thermal mass, which helps moderate indoor temperature fluctuations.

Hardness: The surface of an earthen floor can look and even feel like concrete, but it does not have the same compressive strength. Earthen floors can be dented by point loads or scratched by heavy objects. Their hardness can be compared to that of a wood floor. Experience has shown that because they are softer, earthen floors are more comfortable to stand and walk on than concrete floors.

Water resistance: Sealing with the right kind of oil gives earthen floors a durable, waterproof finish. You can spill water on them and even mop them without any problem. But below the sealed surface, the floor is still unstabilized earth. Prolonged exposure to lots of water could have negative consequences, as the water seeps through cracks and pores into the layers beneath. Earthen floors have been successfully installed in bathrooms, but shouldn’t be used in showers or in basements that flood.

Thickness: Earthen floors are usually ¾–2 in. (2–5 cm) thick. It’s important to consider this added thickness when planning for transitions to adjacent rooms or entryways, or in rooms with already-low headroom.

 Installation time: Earthen floors are not a quick flooring solution. Drying and curing are the most time-consuming stages. Sometimes installers employ fans, heaters and dehumidifiers to speed up the drying process. Under the proper conditions, a floor could be completed and ready for use in two weeks, but three to four weeks is not uncommon.

Toxicity and flammability: More people are becoming concerned about toxic materials in building products, such as glues, polymers, preservatives and flame retardants. Earthen floors are a natural, non-toxic flooring option; the main ingredients come from the earth beneath our feet. The oils used for sealing, while extracted from natural ingredients, do contain some volatile organic compounds (VOCs). Once the VOCs have evaporated (this takes one to three days), they no longer pose any risk to the inhabitants, but any adjacent occupied rooms should be sealed off during the oiling and drying process. Earthen floors are naturally non-flammable, and are good options for areas around stoves and fireplaces.

Testing an Earthen Floor Mix

Many earthen floors are made from locally sourced and processed ingredients. The basic ingredients are sand, clay soil and a short natural plant fiber (chopped straw is a common choice). Sand is the main building block, giving the floor its strength. The fiber provides tensile strength to minimize cracking, and an aesthetic touch. The clay is the binder that sticks it all together. There is a lot of flexibility in the recipe for a floor mix, but good testing is critical to ensure a successful installation.

Start the testing process by making several batches of sand and clay soil mixed together in different ratios. Earthen floors are mostly sand. The final recipe will depend a lot on the amount of clay in the soil; if it is very clay-rich, you will need to add a lot of sand to compensate. Try starting with three test batches with different clay-to-sand ratios, say 2:1 (sand to clay), 3:1 and 4:1. For each test, carefully measure the ingredients into a bucket, mix them dry and then add water slowly until the mix reaches a thick but spreadable consistency like cake batter. Use a wooden float to spread the mixture on a stable surface. Each test patch should be about ¾ in. (2 cm) thick and at least 18 in. (45 cm) in diameter. Smooth it with a steel trowel and allow it to dry. Repeat this process for each of the other tests, carefully labeling the ratios of each.

When the test patches are dry, check them for cracks, dusting and durability. Cracks are caused by the shrinkage that naturally occurs when clay dries. If a test patch has a lot of cracking, the clay content is too high. If sand grains easily come loose when the surface is rubbed, this is an indicator of too little clay. Finally, the test patch should be resistant to scratching with a fingernail. You will be able to mark it, but it should not crumble away as it is scratched. A surface that is too fragile indicates low clay content.

Once you have determined a good sand-to-clay ratio, make new test mixes with fiber added. Try several tests with fiber content ranging from 10–20 percent of the volume of the clay/ sand mix. The “right” fiber concentration is mostly personal preference. Fiber in the floor will affect workability and aesthetics. More fiber makes the mix harder to spread and smooth out; too little could mean a weaker floor. Chopped straw is light in color and contrasts against the darker background of an earthen floor. The more fiber, the more this effect will be visible. Once a suitable recipe is determined, do a final round of testing that includes burnishing, oiling and waxing, to see what the finished floor will look like.

Mixing and Pouring the Floor

An earthen floor needs a stable, strong and level subfloor. Subfloors that settle or flex will eventually cause cracks in the finished floor. If it is a wood-framed subfloor, cover the wood with a vapor retarder to prevent damage from moisture during the installation process. Insulating under the subfloor is highly recommended to improve energy efficiency and occupant comfort. The insulation material must be strong enough to support the weight of the floor above without shifting or compacting over time. Typically, a high-compressive-strength rigid foam insulation is used. Unfortunately, there are few good natural options. Pumice rock has been used with some success. Straw or straw-clay combinations are not recommended.

Before beginning the pour, protect any surfaces in the room that could become damaged or dirty during installation. Set up fans and dehumidifiers for drying in advance. Determine how thick the floor will be and mark the walls with a line to indicate the finished height. There are various methods for ensuring a flat and level floor. A laser level is great tool if it is available and the installers are familiar with its use. Other options include screed rails and boards (a technique commonly used for concrete pads), or using a depth gauge (a simple stick with a mark on it) to measure the floor thickness as it is installed. Mixing the floor material is a messy process that is best performed outside. Organize all the materials in a central location and make sure they are processed and ready for use. Determine an appropriate measuring container (usually a five-gallon bucket) and translate the predetermined recipe for that measuring volume.

Mixing can be done by hand in a wheelbarrow or with a machine like a mortar mixer. For small floors, hand mixing works fine. Have two people with hoes stand at opposite ends of the wheelbarrow. Mix the sand and clay first, dry, then slowly add water to achieve a cake batter consistency. Then add the chopped straw, and more water if necessary. If using a mortar mixer, put water and clay in first, and then power up the mixer. Add the sand next, followed by the straw and more water if needed, then dump into a wheelbarrow for transport. For either method, add water slowly until you are confident about how much is needed to make an acceptable mix. It’s easy to make a dry mix wetter; drying out a toowet mix requires adding more dry ingredients in the correct proportions, which can be complicated.

Dump some wet mix onto the work area. Keep the piles of material to a manageable size, about enough to cover a 2 × 2 ft. (60 × 60 cm) area. Flatten the mix with a wooden float. Check frequently for uniform thickness and level. Use a back-and-forth sawing motion to remove small amounts of mix from high areas without making holes in the floor, or add more mix to low spots and blend it in with the flat part of the float. Once a section is flat and level, swipe a steel trowel lightly over the surface to make it smooth and glossy. It should only take a couple of passes. Do not overwork the material! Any irregularities up to 1/16-inch (1.5 mm) deep can be taken out in the burnishing step.

Burnishing, Oiling and Finishing

Burnishing is the process of polishing the still-damp floor with a steel trowel to further smooth and compress it. This step is not necessary, but it will improve the final appearance of the floor. Burnish within 24 to 48 hours after pouring. The floor should still be damp but not too soft; if it’s possible to make a trowel mark deeper than about an 1/8 in. (3 mm), the floor is still too wet and needs more time to dry. Once it reaches the necessary stiffness, carefully walk out to the far end of the floor, using foam pads or steel floor pans to spread your weight. Mist down a section with a spray bottle and smooth it out by applying pressure with a steel trowel. The surface should be shiny and smooth when done. If you find areas that are particularly low, you can add a little more wet mix to fill them out. This is your opportunity to make the floor perfect!

After the floor is completely dry, it can be sealed with a drying oil like linseed oil. Linseed oil is made from flax seeds, and there are many types and grades available. The recommended oils do not contain heavy-metal drying agents and come premixed with solvent to allow increased absorption. See under “Resources” for suppliers. If a premixed oil is not available, mix four parts linseed oil with one part solvent (mineral spirits, citrus oil or turpentine) to make your own oil blend.

Proper sealing with an appropriate oil is what gives an earthen floor its hardness and resistance to moisture. The oil is absorbed by the dry earth mix and polymerizes as it dries, binding the earth together and making a hard and water-resistant layer on top. Keep in mind that the unoiled floor is fragile — walk and work on it carefully! The oil can be applied with a brush, a paint roller or rags. Apply four to six coats of oil in the same day, one right after the other. Do not leave any puddled oil on the floor; clean it up with a clean rag. Make sure the room is well ventilated while applying the oil, and also while it cures, which can take a week or more.

Once the oil has cured, the floor is ready for use. At this point, there are some additional optional finishing steps that can make the floor even smoother and shinier. Many choose to apply a floor wax for added durability and shine. The recommended waxes are fairly liquid and can be applied with a brush or rag. After drying, the floor should be buffed with an electric buffer to remove excess wax. Another optional step is to lightly sand the floor after the oil has cured and before waxing. This leaves a smoother finish.

The earthen floors of today are a synthesis of ancient and traditional practices melded with modern materials and building science. Until recently, the only way to have an earthen floor was to make it yourself. Now, in some parts of the country, there are contractors who offer the technique, and a ready-mix floor product is available to take out some of the guess work for the novice builder. More people are finding that earthen finishes are not merely appropriate for our modern lifestyles, but are in fact a highly desirable choice. They offer all of us the opportunity to experience the joy of living with earth in our homes.

Sukita Reay Crimmel has installed over 20,000 square feet of earthen flooring, and is one of the preeminent experts in the emerging field of earthen floors. She has created a ready-mix flooring product and a line of finishing oils, manufactured under the name Claylin.

James Thomson has spent a decade introducing students to the joys of building with earth with House Alive, one of the leading natural building training organizations in North America. He is an accomplished public speaker and event planner, having facilitated several professional conferences for natural builders.

A Tamped Road-Base Floor

By Frank Meyer

I made my first earthen floor over 20 years ago. I started the process by collecting samples of all the soil types available in our area. After weeks of playing in the dirt, mixing in stabilizers and trying to strengthen and harden the earth to make it suitable for a floor, I came to an interesting conclusion. One particular road base made the hardest, prettiest and quickest floor without any stabilizers at all. Its rich red color and excellent blend of silt, clay, sand and gravel made test bricks that were more impressive than anything else I came up with.

Not all road bases are created equal. The one I chose is what is known here as “city base,” and is approved for building roads and streets in Austin, Texas. It originates in a quarry where the material is taken from the earth and the silt, clay, sand and gravel are separated, then re-blended to specified proportions. By using this material and applying basic road building techniques, we have a big advantage over traditional poured-earth floors. The process uses relatively little water, thereby requiring a much shorter drying time. It can typically be walked on a day or two after installing.

To begin the process of building a tamped road-base floor, make sure the ground is fairly level, smooth and compacted to at least 6 in. (15 cm) below the planned finished floor height. If a vapor barrier is used, spread a layer of sand 1–2 in. (2.5–5 cm) thick both below and above the barrier to prevent gravel from puncturing it. Apply the first layer of road base to a thickness of about two inches and wet it with a hose or watering can, just enough so that the silt and clay stick to the aggregate.

Compact the first layer. A plate compactor, available at tool rental outlets, works well. (Be sure to vent the building with fans if using a gas-powered compactor.) Hand tamping is slower but much quieter and doesn’t produce fumes. Hand tampers are easily made from wood or concrete or by welding a steel plate to a piece of pipe. Hand tamping the edges works best, even if a powered compactor is used.

Repeat layers as necessary until they reach about 1 in. (2.5 cm) from the finish height. At this point, you need to level the floor. Sift the road base through a piece of 3/8 in. (1 cm) hardware cloth to produce a mixture of silt, clay, sand and small gravel. Layer it on and level it out, using screed boards (much like concrete workers use).

After leveling, moisten and tamp the mix again, making sure that it bonds with the layer below. For the top coat, we screen the material again, this time using 1/8 in. (3 mm) hardware cloth. The top coat is not compacted but hand troweled and burnished, using just enough water to make it bond and be workable. The most important thing is to make sure it bonds with the layer below. Trial and error will give you a feel for it. Although many of the floors I have done have no straw in them, adding chopped straw lessens the likelihood of cracking. Getting a smooth, slick finish is more difficult with straw in the top coat, so I recommend chopping the straw very finely if a glassy finished is desired.

Traditionally earthen floors were sealed with fresh blood from a cow or ox, but most builders today use boiled linseed oil or tung oil to seal the floor so it will not dust up, and it can even be cleaned with a damp mop. The floor must be thoroughly dry before sealing or the finish may turn cloudy, or even moldy in a moist location. I like to put no less than six coats of oil on, making sure each coat is totally dry before adding another coat. There are now many commercial products available for sealing that may even dry harder than linseed oil, but they are more expensive. Consider using them only for the final coat. With time, patience, lots of hard work and an affinity for getting dirty, anyone can do this. Enjoy!

Root cellar

Print pagePDF pageEmail page

Basement root cellar

coldroom1Traditionally, this cold room was an underground space built under or near the home, insulated by the ground and vented so cold air could flow in and warm air out in the fall. Then when winter temperatures arrived, the vents were closed, and the cellar stayed cold but not freezing.

Most modern basements are too warm for long-term winter storage, but you can create an indoor version of the cellars that have long served homesteaders well by walling off a basement corner and adding the vents, as shown in the drawing above. The two vents create a siphon effect that lets you regulate the flow of cold outside air into the insulated cellar room, allowing the temperature to remain near freezing through the winter months.

That’s why you’ll want to choose a corner location for your installation if you can. This offers maximum exposure to exterior walls while minimizing the need to build and insulate interior walls. And if you’ve got a choice, select a spot with the highest soil height outside. Does one of your possible options include northern exposure? Terrific! That’s great if you can get it.

coldroom2Insulation is your next challenge, and good reasons exist to consider using rigid sheets of foam instead of traditional fiberglass batts. The most important is moisture resistance. Any basement is likely to get damp from time to time, and fiberglass has almost no ability to resist mold growth and deterioration when water is present. Foam, on the other hand, tolerates moisture much better. It’s also easier to use than fiberglass, and it’s non-irritating. Extruded polystyrene is especially good in this regard. It’s also a highly effective thermal insulator. Just be aware that some jurisdictions require foam to be covered with a fire-resistant sheet to meet code specifications. As you plan your insulation strategy, be sure to include the ceiling of your cellar. Warmth coming down from heated areas above could raise cellar temperatures too high for the food.

To function optimally, space the interior ends of the intake and exhaust pipes as far apart as possible. Also, you’ll need to plan your shelf layout to allow as much top-to-bottom air movement as you can achieve. This is where ceiling-mounted shelves can really help. The best idea is to use hanging metal wire frames that support shelves made of 2-by-12-inch lumber you cut yourself. Cover the vent openings with screen to keep out insects and mice, and if you want to really cool the room down quickly, add a little exhaust fan to supplement the natural flow of cool air down into the room.



Print pagePDF pageEmail page


Les facteurs d’efficacité:

  1. Valeur R
    c’est la valeur isolante; le plus haut – le mieux c’est
  2. Couche Low-e
    une couche microscopique qui reflète les rayons infrarouges de l’extérieur (été) et de l’intérieur (hiver); il faut évaluer que ce type de protection diminue aussi le gain solaire. C’est le coefficient du gain solaire en chaleur = CGSC, mesuré en %. Pour régions froides 0.55 et <0.4 pour les régions chaudes
  3. Valeur d’étancheté de la fenêtre
    Le moins – le mieux (moins que 0.3 picube/picarré de fenêtre/minute.
  4. Distance entre les vitres
    standard: 1/2″, mieux: 3/4 »; best: 1″
    les espaceurs sont souvent en aluminium; il y a des versions moins conducteurs à la chaleur: inox, mousse, plastique
  5. Cadres des fenêtres
    bois et vinyle sont bon; meilleur: fibre de verre remplit de mousse isolante

Plus d’infos:

Kume Curtain

Insulating curtains that cut heat losses through windows by 50% by paradigm (instructables)



« Kume » in the language of the Mapuche people of Chile means « good. » The thermographic photograph shown above speaks for itself. It was taken early one winter morning and clearly shows that the window fitted with a Kume curtain is much cooler than the one fitted with a conventional decorative curtain – and is actually even cooler than the masonry wall.

The benefits offered by Kume curtains are as follows:

  1. They lower heat losses through windows by 50 to 70%, and improve comfort by eliminating cold spots and drafts in rooms. In the first test homes fitted with Kume curtains, heating fuel consumption dropped by 25%.
  2. They are inexpensive. The cost of the materials that are needed to make a Kume curtain typically ranges from US$ 1 to 1.5 per square foot.
  3. They are easy to make. Putting together a Kume curtain does not require great manual skills or much time.

Step 1: What is a Kume curtain?

kume3It is a roll-up curtain that is composed of four distinct layers:

  1. A front panel which acts as the first layer of insulation and seals the perimeter of the window opening when the curtain is closed.
  2. A moisture barrier which prevents indoor humidity from reaching the window and condensing on the cold glass and window frame.

3 & 4) Wooden battens which maintain the fabric stretched out and thereby ensure that the curtain fits tightly against both sides of the window opening. The battens also create air pockets which further reduce heat losses hrough the curtain.

5) A back panel which acts as the final layer of insulation and helps seal the perimeter of the window opening when the curtain is closed.

A Kume curtain can be used on any window whose frame is recessed by at least 1.5″ with respect to interior surface of a wall. This is because the curtain works best if it is able to tightly seal the complete perimeter (that is, the top, bottom and sides) of the window opening.

 When raised, the curtain forms a tight roll whose diameter varies depending on the length of the curtain and the thickness of the material used. For example, a curtain that is 5 ft long and made of two layers of fleece will produce a roll with a diameter of approximately 5″.


For a window opening of width « W » and height « H“, you will need the following components:

  1. Front panel
    Width = W + 0.75″, height = H + 0.75″
    Material = Polar fleece or another thick and flexible fabric. If the Kume curtain is used as a primary curtain, the front panel can be made with a fabric that best suits the decor of the room. Wash the fabric before making the panels.
  2. Moisture barrier
    Width = W – 0.75″, height = H
    Material = Transparent polyethylene with a thickness of approx. 4 mils (0.004″). Black polyethylene sheet will make your curtain totally opaque.
  3. Upper batten
    0.5″ x 1″ x Length = W – 0.75″
    Material = Pine or hardwood
  4. Lower battens
    0.5″ x 0.75″ x Length = W – 0.75″
    Material = Pine or  hardwood
    Number = The spacing between the battens should not exceed 20″.
  5. Back panel
    Width = W + 0.75″, height = H + 0.75″
    Material = Ideally polar fleece or another thick and flexible fabric
  6. Fasteners (not shown); for the back panel we recommend using staples, while for the front panel, which is visible from the room, we recommend using thumb tacks or upholstery tacks. If you are concerned with having these fasteners rust and stain the fabric, you should use stainless steel staples and rust resistant tacks.


  1. The front and back panels are a bit bigger than the window opening. This is because these pannels need to completely plug the window opening when the curtain is closed.
  2. The fabric chosen for the front and back panels should ideally be moderately thick, tightly woven to restrict the passage of air, and flexible so that it can accommodate itself tightly against the sides and bottom of the window opening.

The making of

  1. Trace the position of the battens on the plastic sheet.
    Make sure that:
    The top edge of the upper batten is aligned with the top edge of the plastic sheet;
    The bottom edge of the lower batten is aligned with the bottom edge of the plastic sheet; and
    The remaining battens are evenly distributed over the height of the plastic sheet.
  2. Slip the battens under the plastic sheet
    and use the marks traced on the plastic sheet to align them properly.
    Since the length of the battens is equal to the width of the plastic sheet, the ends of the battens should also align with the sides of the plastic sheet.
  3. Lay the front panel over the plastic sheet.
    The front panel is slightly longer and wider than the plastic sheet, so when in place:
    A) The top of the front panel should be aligned with the top batten;
    B) The bottom of the front panel should extend by ~0.75″ below the lower batten and base of the plastic sheet; and
    C) Each side of the front panel should extend by ~3/8″ past the ends of the battens and sides of the plastic sheet.
  4. Use tacks to fasten the front panel and the plastic sheet to the battens.
    kume9Place a tack within 0.5″ of the ends of each batten.
    Use enough thumb tacks between both ends of the battens to properly fix the fabric and plastic to the battens.
    On the upper batten, the spacing between the thumb tacks should be between 4″ to 8″.
    On the lower battens, the spacing between the thumb tacks can be increased to double the spacing used on the upper batten.
  5. Flip the curtain over.
  6. Place the back panel over the partially assembled curtain so that it rests directly on the battenskume10The back panel has the same dimension as the front panel, so when in place:
    A) The top of the back panel should be aligned with the top batten;
    B) The bottom of the back panel should extend by ~0.75″ below the last batten and base of the plastic sheet;
    C) Each side of the back panel should extend by ~3/8″ beyond the ends of the battens and sides of the plastic sheet.
  7. Use staples to fasten the back panel to the battens.
    Place a staple within 3/8″ of the ends of each batten. This will ensure that the material maintains its full width and touches the sides of the window opening.
    Use enough staples between both ends of the battens to properly fix the fabric to the battens.


Refer to the web page for instructions on how to mount the curtain and create the tie to hold the curtain in the rolled position. Other options for assembling the curtain are also described on this page. This web page provides the curtain assembly instructions in French, Spanish and Italian.

You can add conductive mesh to the curtain to make it a shield for EMF!




Print pagePDF pageEmail page

dalle footing

dalle convent

Dalle flottante

Air cleaning plants

Print pagePDF pageEmail page

Here are a dozen house plants NASA recommends for indoor air purification:

1. peacelilyPeace lilies ranked highest at cleansing nearly all chemicals floating around in today’s home air. These were the most effective plants at removing benzene, formaldehyde, xylene, toluene and trichloroethylene from the atmosphere. Peace lilies are common in both homes and offices and perform well even in low-light conditions. They can be located several feet away from a window.

2. sanseveriaSanseveria, called snake plant, performed second highest, removing nearly all air contaminants. This was good news because they’re not only easy to grow but long-living, with plants commonly reaching ages of 25 to 40 years old. Being a succulent, they are tolerant of occasional neglect (That makes them perfect for me!).
3. arecaPalms including areca, lady and bamboo types. Avoid soggy soil, and watch for spider mites.





4. goldenpothosGolden pothos, also called devil’s ivy, is a rapid-growing vine useful for hanging baskets or anywhere trailing plants are needed.



5.dracaena Several types of dracaenas made the list, including marginata, Warnecki and Janet Craig types.



6. ivyEnglish ivy has a classic appearance. Occasionally washing the foliage will reduce its susceptibility to spider mites.




7. chrysanthemumChrysanthemums and gerbera daisies are effective purifiers, but they are difficult to maintain as house plants, other than enjoying them occasionally as blooming gift plants from the florist.


8. spiderplantSpider plant has long been recognized as an air cleanser.




9. aloeAloe Vera is also called medicine plant. It is a good air cleaner and good for first aid too.



10. ficusFicus, the weeping fig becomes tree-like as it grows.




11. Chinese Evergreenchinevergreen does well in low light.




12. philodendronPhilodendron air cleaners include both the vining heartleaf and selloum types.

Chauffage – Heating

Print pagePDF pageEmail page

Build a Rocket Stove

The video’s clever design for a dual-burner DIY rocket stove uses only six concrete masonry units (CMU), also known as cement blocks or foundation blocks. By stacking the blocks as demonstrated, you’ll be able to channel enough heat from a small fire to cook food in two separate pots.

rocketstoveTo build the rocket stove featured in this video, you’ll need 3 standard cement blocks, 2 half-blocks and one stretcher unit. As the video demonstrates, the blocks can be arranged quickly, and your rocket stove will be fully operational in a matter of minutes. Start by placing one standard block lengthwise, with its solid surface down, and topping it with the stretcher unit having its openings facing skyward. Flank this arrangement on each end with one standard block, openings turned out to the sides (the side-facing openings will function as fuel magazines into which you’ll feed the flames). Place the half-blocks on top to create two vertical chimneys, over which you can place recycled burner grates to support cooking pots and to allow for a draught. And that’s it: Now you know how to build a rocket stove for cooking.

The video also includes instructions to build a more compact, single-burner rocket stove using just four cement blocks.

Juured Cob Rocket stove

Building an Oven with Cob

www.mosswoodfarmstore.comVideo: Building an Earth oven with cob contstruction


Mini cubic stove – high performance

Cubic Mini Wood Stoves ($500.00 +)

Living Lightly (many variations)

Compost water heater

Whole systems design (compost water heater)

Puit canadien

Article dans Ecohabitation

Radiant floor/wall/ceiling heating

Flexco in Chambly: one conductor cable creates a lot of emf; double conductor twisted cables do not create emfs. They do also radiant heat with water (gas boiler).

Thomason Trickle heater

thomason trickleflow

thomason patent1
thomason patent2
Article in Mother Earth 1
Article in Mother Earth2

Lunos Ventilation with heat recovery



Plan Toilette Lombricomposteur

Print pagePDF pageEmail page


Les dimensions se basent sur la taille des caissons à l’intérieur. Nous avons pris deux boîtes de rangement de 121L chacune. Si vous voulez employer un contenant avec d’autres dimensions vous pouvez faire des changement des dimensions du lombricomposteur comme suit:

  1. Placez les deux bacs un à côté de l’autre avec un espace de 1″ entre les deux
  2. Mesurez la longueur (Lo), la largeur (La) et la hauteur (Ha) de l,ensemble
  3. Ajoutez 2″ à la longueur; ajoutez 2″ à la largeur et (2″+ le diamètre du tuyau (ici 4″)) à la hauteur
  4. Pour la styromousse ajoutez 2x l’épaisseur (ici 2″) de celle-ci aux 3 dimensions
    ces dernières chiffres vous donnent les dimensions des côtés de la boîte en contre-plaqué

Le Lombricomposteur

Ses dimensions sont: 48″ longueur x 40″ largeur x 25.5″hauteur; il est fabriqué en contre-plaqué 3/4″

contre-plaqué, ¾ » longueur (po) largeur (po) pieds carrés
Panneau du fond 39.5 48 13.17
Panneau couvercle 39.5 48 13.17
Panneau avant 24 48 8.00
Panneau arrière 24 48 8.00
Panneau droite 24 38 6.33
Panneau gauche 24 38 6.33
Total 55
# feuilles 2
Prix unité $36.71 Montant $73.42
Styromousse, 2 »x48 »x96 » longueur (po) largeur (po) pieds carrés
Panneau avant 47 22 7.18
Panneau arrière 47 22 7.18
Panneau droite 34 22 5.19
Panneau gauche 34 22 5.19
Panneau du fond 47 38 12.40
Panneau couvercle 47 38 12.40
Total 49.56
# feuilles 2
Prix unité $27.98 Montant $55.96
  1. Coupez un trou dans le fond de la boîte à rangement  pour y insérer le drain; faites pareil avec l’autre boîte de rangement.
  2. Coupez les morceaux de contre-plaqué selon la table ci-haut. Assemblez les morceaux pour en faire une boîte avec un couvercle. Selon la table en haut vous avez besoin 2 feuilles de contre-plaqué de 3/4″x4’x8′. En terme de quincaillerie vous avez besoin deux charnières et un loquet.
  3. Placez les boîtes de rangement dans la boîte et marquez les emplacements des drains. Coupez les 2 trous dans le fond de la boîte en contre-plaqué.
  4. Coupez les morceau de styromousse et enserrez les dans la boîte en contre-plaqué (deux feuilles 2 »x4 »x8 » seront suffisant).
  5. Placez les boîtes de rangement dans la boîte de contreplaqué avec l’isolation en styromousse et marquez les emplacements des drains. Coupez ensuite 2 trous pour les drains.
  6. Assemblez la tuyauterie des drain du lombricomposteur et placez-le à l’endroit prévu.
  7. vermicontent-schemaUne fois complet, vous raccordez le lombricomposteur au tuyau qui vient des toilettes; habituellement un tuyau drain sanitaire blanc, 4″. Vous percez l’arrière du lombricomposteur pour passer ce tuyau. A l’intérieur du lombricomposteur vous attachez un coude 90º avec un autre bout de tuyau 4″- sans le coller pour que vous pouvez le tourner afin que le drain peut décharger dans un bac ou dans l’autre.
  8. Ensuite vous pouvez remplir les 2 bacs étanches (boîtes de rangement): installez une couche de 2″ de gravier au fond (prenez du gravier sec et inoculez-le avec 1L de Nanobio que vous pouvez acheter ici). Celle-ci est recouvert d’un géotextile. Par dessus duquel vous installez une bonne couche de 6 » de mélange carbone (1p feuilles partiellement décomposées + 1p copeaux de bois + 3,000 vers)




La Plate-bande étanche

  1. percetancheMaintenant commencez la fabrication de la plate-bande étanche: Fabriquez un cadre en 2″x6″
  2. Attachez à l’intérieur une couche de toile noir (epdm). Vous pouvez la agrafer en haut du cadre.
  3. Coupez un trou pour l’arrivée d’eau et un autre pour la sortie d’eau. L’arrivée d’eau doit être dans les premier 2″ du fond, car l’eau arrive dans le gravier. Le tuyau de sortie est juste par dessus du géotextile – par lui l’excédent de l’eau est évacuée. platebande-schemaVous pouvez rendre les percés des tuyaux étanches ou par un passe-cloison ou par un « pipe-boot ».
  4. Ensuite vous remplissez le fond de la plate-bande avec une couche de gravier (3/4″ net). Sur laquelle vous posez une feuille de géotextile. Finalement vous remplissez le cadre jusqu’à environ 1″ en dessous du haut du cadre avec du terreau riche en masse organique.
  5. Le trop-plein (sortie) de la plate-bande peut être canaliser pour irriguer d’autres parties de votre jardin.







Le fonctionnement

Avec le système Solviva vous pouvez garder votre toilette à chasse d’eau. Lorsque le contenu de la toilette s’évacue il arrive dans le lombricomposteur. Ici les liquides vont rapidement percoler à travers le mélange carbone, le géotextile et le lit de gravier pour être canalisés dans la plate-bande étanche. Les solides restent dans le mélange carbone où ils sont digérés par les vers. Selon Solviva les vers prennent deux semaine en hiver et 5 jours en été pour digérer tout.

nanobio-500-1000-300x300Gardez l’inoculation du Nanobio (qui vous pouvez acheter ici) en ajoutant 1 tasse/mois est versé sur le mélange de carbone. La présence du Nanobio aide grandement à éliminer les pathogènes présentes dans la matière fécale.

La plate-bande est étanche pour assurer qu’il n’y a pas de contamination de la nappe phréatique par des pathogènes. Vous pouvez inoculer le terreau pendant son installation en ajoutant du Nanobio en raison de 1:80 (une CàS par litre). La plate-bande est irrigué sous la surface, donc il n’y a pas de danger de contamination des fruits qui poussent hors terre (tomates, concombres, etc.); n’y plantez pas des légumes racines (carottes, betteraves, etc.). Si vous ne faites pas confiance plantez-y des fleurs.
L’eau qui sorte de la plate-bande étanche est bon pour être canalisé dans d’autre plate-bandes (non étanches) car les micro-organismes dans le sol ont fait leur travail pour éliminer les pathogènes.


Pour toutes questions/suggestions, svp contactez-nous par courriel ou (514) 667-5773

Toilettes composteures

Print pagePDF pageEmail page


tose1La vidéo (cliquez) vous donne une courte intro sur le sujet: Actuellement nous utilisons 30% de l’eau POTABLE pour dégager nos excréments! Les technologies de traitement des eaux usées conventionnelles (accompagnées par les règlements gouvernementaux) sont uniquement profitables à la mafia des eaux usées ($) , non pas pour les terres, ni les cours d’eau naturels ni nos ressources d’eau potable.

Le mouvement des toilettes composteures nous propose des solutions vraiment efficaces et peu coûteuses (« désolé » pour la mafia ;)).

 Toilette à chasse sèche

altoil1Le projet CACA D’OR d’Aliksir, par Lucie B. Mainguy dans une approche d’habitat circulaire selon la  vision : concilier écologie, économie et confort.
ALIKSIR huiles essentielles, 1040 Chemin du Roy, Grondines, Québec,  Canada, G0A 1W0.

Les composantes du projet

Un concept « low-tech ».  Les composantes de l’habitat circulaire  sont  des solutions simples, efficaces et peu coûteuses, adaptables aux résidences isolées comme dans les milieux urbains et intégrables aux bâtiments existants et futurs. Un design contemporain capable de s’intégrer dans les environnements haut de gamme.



altoil3Ce  type de sols d’origine précolombienne a été créé par l’homme entre  – 800 et 500.  Sa profondeur peut aller jusqu’à 1,5 mètres d’HUMUS. Qui plus est, le récolter ne réduit pas son abondance. Les fermiers ont découvert qu’il se renouvelle à la vitesse d’un centimètre par an. La  recette de  litière  pour engendrer la  Terra Preta :

  1. Mouka comme base de matière organique,
  2. Charbon de bois,
  3. bactéries actives et thermophiles
  4. Excréments humains

L’ensemble après compostage contrôlé  affectera le sol positivement et assurera le parfait contrôle des odeurs et des pathogènes.


LE CIRCUIT ou le mouvement des matières est assuré par des vis sans fin et des moteurs électriques.  Le  tout parfaitement automatisable et sans souci. L’installation et l’entretien sera facilement assuré par du personnel formé et qualifié. Les fournitures se trouvent déjà sur le marché, soit parmi les équipements agricoles ou les quincailleries.


altoil5Dans ce concept de toilette, la litière remplace l’eau pour évacuer nos excréments. Le déplacement des matières est assuré par des vis sans fin actionnées par  une  manivelle ou par des moteurs électriques qui permettent de recréer le confort de la chasse d’eau  mais sans l’eau. Nous y retrouvons ce que nous aimons de la chasse d’eau : faire disparaitre automatiquement nos excréments et les odeurs qui lui sont associées.
Un réservoir de litière de 11 pi³ (278 litres) permet de faire 934 chasses : son contenu durera 33 jours pour une famille de 4 personnes.


altoil6Alimenté par le bas, en continu, par une vis sans fin, le digesteur assure une gestion sans odeurs et sans risques sanitaires.  Il se vide  sans intervention, par débordement après transformation de la matière en compost.
Ce modèle de 2 m² assure la retenue pendant 18 mois pour une famille de 4 personnes.  Il assure un cheminement continu des matières fraiches qui sont conservées à l’intérieur  durant toute la période nécessaire à la transformation en compost assaini et sans danger de contamination par des pathogènes.
Pour les litières et excréments, le volume de compost obtenu sera d’environ 1 m³/an.
On ajoutera aussi les compostables de cuisine de 4 personnes qui représentent 2.5 m³/an et qui se  réduiront à 1 m³ de compost. Un total de 5 m³ au départ donnera donc 2 m³ de compost.


Faisant percoler l’eau grise de la maison à travers le compost actif, nous imiterons la percolation naturelle de la pluie à travers le sol. En effet, l’action des micro-organismes est purificatrice de l’eau de surface qui s’acheminera proprement vers la nappe phréatique. Dans le cadre du projet, nous testerons l’action du compost sur la qualité de l’eau.


Le compostage à chaud est assuré par des bactéries thermophiles et il assainit rapidement les excréments (en  moins de 1 mois). Dépendant des volumes en compostage, le récupérateur de chaleur pourrait assurer soit la fourniture d’eau chaude domestique, soit une autonomie d’énergie complète pour le chauffage d’une habitation au Québec.  Selon nos sources, 15 m³ (équivalant à 8 tonnes) de matière en compostage suffirait pour générer l’énergie nécessaire pour chauffer une maison au Québec. Des pré-tests probants ont été réalisés et un prototype à l’échelle résidentielle sera installé sous peu.

 La Toillombrique

solvivabookComposting toilets are popular in developing countries and ecological communities, however many people dislike the procedure of sawdusting and being « forced » to see the heap of feces at the bottom. A viable alternative to this glitch is provided in the book « Solviva » by Anna Edey; it describes a composting toilet which is not ‘running dry’ but where the content of the toilet is flushed out by water.

The evacuating pipe from the toilet(s) – usually 3″ or 4″ piping ends up in a movable elbow on top of a box separated in two compartments. Once the first compartment is full, the elbow is turn to supply stuff into the second compartment.

The Vermicomposter
The box for a family of 4 measures 4′ wide x 3′ deep x 3′ high; it is insulated with 2″ Styrofoam if placed outside. The box has a water tight lining. You can also create two separate compartments by installing two 45L plastic storage bins. On the bottom of each box is a drain which channels the liquids into green filters: one or more watertight planters.
Put 2-3″ of gravel in the bottom of the box, cover it with a layer of geotextile and fill the box up to 1/3 of it’s height with It is filled with a BIOCARBON MIX: partly composted leafs, wood chips and 3000 worms (red wiggler).

The watertight Planters

Are raised beds in a wooden casing. the inside of the casing is lined with a watertight liner (EPDM) the incoming pipe and the outflowing pipe are inside a gravel bed. The is filled up with soil which contains a high ratio of sand for easy percolation.
Install a second or more similar beds if a lot of water comes out of the first bed.
You can inoculate the gravel with Septic Blizz (mixture of alive microorganisms) to kill off pathogenes if you want to grow edible plants in these planters. Inoculate the gravel after you have filled it in, when it is still dry. Add 1 gal of Septic Blizz 2-3x a year.

The solviva toilet composts human feces within 1 week in winter and 3-4days in summer and delivers high quality vermicompost.

Here is the efficiency table for a retaining time of 10min (10min flow through):

Affluent (ppm)

Effluent (ppm)

Kjeldahl N



Amonia N












The GREENFILTERS are epdm lined planting beds (black pond liner) where you grow  plants, flowers, bushes, trees which take up a lot of water and nitrogen.


Left: the insulated vermi-composting unit; Right: the water-tight planter to filter the black water




Vous pouvez acheter l’ensemble d’une Toillombrique, ou uniquement les plans pour la fabriquer vous-même au:  Magasin de la Transition.


Une autre version expérimenté au Portugal – webarticle

 La toilette sèche faite à la main

toilettes-seches-artAussi appelée « toilettes composteurs ».
Comme son nom l’indique, les toilettes sèches sont des toilettes qui fonctionnent sans eau. Leurs avantages sont multiples notamment l’arrêt d’une pollution nitratée, phosphatée et bactérienne importante liée à nos déjections .
Cette pollution est due au transport par la voie aquatique et son rejet final dans le milieu naturel, à la production et au traitement des boues de station d’épuration et des fosses septiques. Les toilettes sèches permettent une récupération d’unités d’azote et de phosphore importantes à notre autonomie, la suppression d’un poste important de consommation d’eau potable et la suppression des odeurs.

éléments à considérer quand on veut le construire:
La vidange du seau se fait par une personne. La capacité de stockage doit être de 3 à 4 jours pour une famille de 4 personnes. L’espace de confort entre les fesses et les matières fécales d’un minimum de 10″.

Le seau réceptacle:
Il doit être fait en plastique avec un diamètre intérieur de 16″, d’une hauteur : 17 », muni de 2 poignées pour un transport facilité.
Le seau réceptacle « idéal » serait en inox fin, d’une forme ovalisée pour la ventilation largeur 16″, longueur 20 » et hauteur 19″, aussi avec 2 poignées.

Caisson :
–  ossature : bois
–  habillage : parquet en pin
–  hauteur : 19 »
–  Dimension partie seau à copeaux : 20 »x20 »
–  Dimension partie seau à matières fécales : 20  » x 24 »x 36 » x 33 »

Marche :
–  hauteur : 10 cm

Trou pour les différentes matières :
–  Dimension trou pour la sciure : 21 x 26
–  Dimension trou des toilettes : 27 x 31

Ventilation :
–  Tuyau pvc de 4″ avec clapet

Le traitement des bois contre la vermine:
–  Xylophages : sel de bore
–  Salissures : Huile dure

Le seau va être vidé dans un endroit pour le faire composter ou sécher .

Le droit québecois à la toilette

Q-2 Loi sur la qualité de l’environnement
SECTION V : La qualité de l’eau et la gestion des eaux usées – Autorisation.
32. Nul ne peut établir un aqueduc, une prise d’eau d’alimentation, des appareils pour la purification de l’eau, ni procéder à l’exécution de travaux d’égout ou à l’installation de dispositifs pour le traitement des eaux usées avant d’en avoir soumis les plans et devis au ministre et d’avoir obtenu son autorisation.
Cette autorisation est également requise pour les travaux de reconstruction, d’extension d’installations anciennes et de raccordements entre les conduites d’un système public et celles d’un système privé.

Depuis le 12 août 1981, les municipalités sont responsables d’exécuter et de faire exécuter le Règlement sur
l’évacuation et le traitement des eaux usées des résidences isolées (Q-2, r.8).

L’utilisation d’une technologie est conditionnelle à une certification de performance par le Bureau de normalisation du Québec (BNQ).

Le code Q2-R.8 spécifie que ce type de toilettes n’est permis que pour un camp de pêche ou de chasse, ou encore, pour une maison isolée existante si un élément épurateur, une fosse septique, un champ d’épuration, un puits absorbant ou un filtre à sable ne peut être construit.

Et: les toilettes chimiques sont autorisées sans problème

D.4 L’utilisation d’additifs dans une fosse septique permet-elle une vidange moins fréquente de la fosse?

Non, l’usage d’additifs ne dispense pas le propriétaire de vidanger les boues de la fosse septique reliée à sa résidence, comme l’y oblige le Règlement.
L’utilisation d’additifs dans les fosses septiques est laissée à la discrétion de chaque propriétaire. Cependant, le Guide technique sur le traitement des eaux usées des résidences isolées mentionne que le Ministère ne recommande pas leur usage. En effet, des études indiquent que l’utilisation d’additifs n’empêche pas l’accumulation des boues. De plus, certains types d’additifs favorisent la solubilisation des matières grasses, tandis que d’autres interfèrent dans la sédimentation des solides. Par ailleurs, les bactéries ajoutées dans les fosses septiques peuvent détruire celles qui sont déjà présentes dans les eaux usées, ce qui diminue l’efficacité de la fosse.

Abri Chauffe Souris – Bathouse

Print pagePDF pageEmail page

bathouse1Bat Houses for Mosquito Control

Bats are mother nature’s insecticide, and a single brown bat can eat up to 1,000 mosquitos an hour!

The ideal location is about 10-15ft high, with a clear area below, free from branches, etc. Bat houses mounted on poles or on the side of buildings are easier for bats to locate. Also, houses should ideally face southeast, to catch some sunlight during mornings to warm their little bat bodies up.

The size of your bat house can vary, depending on the amount of wood you have available. Use these measurements as an approximation if your supplies are lacking. Cut the following pieces in 1/2 » or 3/4 » outdoor grade plywood (or whatever you have):

  • Backboard: 26.5 » x 24 », saw grooves throughout the full length of  the backboard; this gives the bats something to grip, climb, and hang from in the bat house.
  • Top front board 16.5 » x 24 »bathouse2
  • Bottom front board 5 » x 24 »
  • furring boards 2x 1 » x 21.5 »
  • furring board 1 » x 22 »

Attach the furring strips to the outer rim of the backboard with caulk.

Then attach the front top and bottom piece on top with caulk. Leave a 1/2 » vent in between the top and bottom front piece. You can use shingles, galvanized metal, or left over wood to create a roof for the house.
I simply used some left over pieces and cut the wood at a 45 degree angle for a roof.